171 research outputs found

    Patterns of Early Lake Ontogeny in Glacier Bay as Inferred from Diatom Assemblages

    Get PDF
    We studied a series of recently formed lakes along a deglaciation chronosequence in Glacier Bay National Park to examine changes in water chemistry, primary production, and biotic composition that accompany the early ontogeny of north-temperate lakes. Successional trends in these freshwater ecosystems have been explored with a two-tiered approach that includes (1) the comparison of limnological conditions among lakes of known age and in different stages of primary catchment succession, and (2) the inference of water-chemistry trends in individual sites based on fossil diatom stratigraphy. This paper emphasizes the reconstruction of limnological trends from fossil diatom assemblages. The modem distribution of diatoms in relation to water-chemistry gradients within 32 lakes of varied age is used to derive a transfer function for the reconstruction of chemical trends from fossil assemblages in sediment cores. The modem data suggest that pH and TN (total nitrogen) exert significant and independent controls on diatom distributions, and thus trends in these variables are reconstructed for Bartlett Lake, as an example of our approach. Core reconstruction corroborates patterns in pH suggested by the modem chronosequence and shows a gradual decline in lake water pH after about 100 years. The Bartlett Lake core also follows the chronosequence pattern in TN concentration, with an initial increase followed by a decline after ca. 100 years. Reconstructions from other sites, however, suggest that trends in total nitrogen concentration are variable, and thus that localized patterns of plant colonization and soil development may result in regional variability in lake water nitrogen concentration over time

    Synchronous climatic change inferred from diatom records in four western Montana lakes in the U.S. Rocky Mountains

    Get PDF
    Late-Holocene environmental and climatic conditions were reconstructed from diatom assemblages in sediment cores from four western Montana lakes: Crevice Lake, Foy Lake, Morrison Lake, and Reservoir Lake. The lakes show synchroneity in timing of shifts in diatom community structure, but the nature of these changes differs among the lakes. Two of the sites provide highly resolved records of hydrologic balance, while the other two stratigraphic sequences primarily record temperature impact on lake thermal structure. All four lakes show significant change in five discrete intervals: 2200–2100, 1700–1600, 1350–1200, 800–600, and 250 cal yr BP. The similarities in the timing of change suggest overlying regional climatic influences on lake dynamics. The 800–600 cal yr BP shift is evident in other paleorecords throughout the Great Plains and western US, associated with the transition from the Medieval Climate Anomaly to the Little Ice Age. Large-scale climatic mechanisms that influence these lake environments may result from atmospheric circulation patterns that are driven by interactions between Pacific and Atlantic sea-surface temperatures, which are then locally modified by topography

    Synchronous climatic change inferred from diatom records in four western Montana lakes in the U.S. Rocky Mountains

    Get PDF
    Late-Holocene environmental and climatic conditions were reconstructed from diatom assemblages in sediment cores from four western Montana lakes: Crevice Lake, Foy Lake, Morrison Lake, and Reservoir Lake. The lakes show synchroneity in timing of shifts in diatom community structure, but the nature of these changes differs among the lakes. Two of the sites provide highly resolved records of hydrologic balance, while the other two stratigraphic sequences primarily record temperature impact on lake thermal structure. All four lakes show significant change in five discrete intervals: 2200–2100, 1700–1600, 1350–1200, 800–600, and 250 cal yr BP. The similarities in the timing of change suggest overlying regional climatic influences on lake dynamics. The 800–600 cal yr BP shift is evident in other paleorecords throughout the Great Plains and western US, associated with the transition from the Medieval Climate Anomaly to the Little Ice Age. Large-scale climatic mechanisms that influence these lake environments may result from atmospheric circulation patterns that are driven by interactions between Pacific and Atlantic sea-surface temperatures, which are then locally modified by topography

    Patterns of Early Lake Ontogeny in Glacier Bay as Inferred from Diatom Assemblages

    Get PDF
    We studied a series of recently formed lakes along a deglaciation chronosequence in Glacier Bay National Park to examine changes in water chemistry, primary production, and biotic composition that accompany the early ontogeny of north-temperate lakes. Successional trends in these freshwater ecosystems have been explored with a two-tiered approach that includes (1) the comparison of limnological conditions among lakes of known age and in different stages of primary catchment succession, and (2) the inference of water-chemistry trends in individual sites based on fossil diatom stratigraphy. This paper emphasizes the reconstruction of limnological trends from fossil diatom assemblages. The modem distribution of diatoms in relation to water-chemistry gradients within 32 lakes of varied age is used to derive a transfer function for the reconstruction of chemical trends from fossil assemblages in sediment cores. The modem data suggest that pH and TN (total nitrogen) exert significant and independent controls on diatom distributions, and thus trends in these variables are reconstructed for Bartlett Lake, as an example of our approach. Core reconstruction corroborates patterns in pH suggested by the modem chronosequence and shows a gradual decline in lake water pH after about 100 years. The Bartlett Lake core also follows the chronosequence pattern in TN concentration, with an initial increase followed by a decline after ca. 100 years. Reconstructions from other sites, however, suggest that trends in total nitrogen concentration are variable, and thus that localized patterns of plant colonization and soil development may result in regional variability in lake water nitrogen concentration over time

    Lacustrine evidence for moisture changes in the Nebraska Sand Hills during Marine Isotope Stage 3

    Get PDF
    In the central Great Plains of North America, loess stratigraphy suggests that climate during the late Pleistocene was cold and dry. However, this record is discontinuous, and there are few other records of late-Pleistocene conditions. Cobb Basin, located on the northern edge of the Nebraska Sand Hills, contains lacustrine sediments deposited during Marine Isotope Stage 3, beginning approximately 45,000 cal yr BP and continuing for at least 10,000 yr. The lake was formed by a dune dam blockage on the ancient Niobrara River, and its deposits contain a diatom record that indicates changes through time in lake depth driven by changes in effective moisture. During the earliest stages of lake formation, the climate was arid enough to mobilize dunes and emplace dune sand into a blocking position within the Niobrara stream bed. Diatom assemblages suggest that lake-level was shallow at formation, increased substantially during a wet interval, and then became shallow again, as arid conditions resumed. By about 27,000 cal yr BP the lake was filled, and a shallow ephemeral river occupied the basin

    Lacustrine evidence for moisture changes in the Nebraska Sand Hills during Marine Isotope Stage 3

    Get PDF
    In the central Great Plains of North America, loess stratigraphy suggests that climate during the late Pleistocene was cold and dry. However, this record is discontinuous, and there are few other records of late-Pleistocene conditions. Cobb Basin, located on the northern edge of the Nebraska Sand Hills, contains lacustrine sediments deposited during Marine Isotope Stage 3, beginning approximately 45,000 cal yr BP and continuing for at least 10,000 yr. The lake was formed by a dune dam blockage on the ancient Niobrara River, and its deposits contain a diatom record that indicates changes through time in lake depth driven by changes in effective moisture. During the earliest stages of lake formation, the climate was arid enough to mobilize dunes and emplace dune sand into a blocking position within the Niobrara stream bed. Diatom assemblages suggest that lake-level was shallow at formation, increased substantially during a wet interval, and then became shallow again, as arid conditions resumed. By about 27,000 cal yr BP the lake was filled, and a shallow ephemeral river occupied the basin

    In memoriam: John Platt Bradbury (1936–2005)

    Get PDF
    John Platt Bradbury, a former United States Geological Survey (USGS) geologist, and a long time and much valued editorial board member for the Journal of Paleolimnology, died of cancer (abdominal mesothelioma) on August 15, 2005, in the log home that he and his wife Vera Markgraf built in the mountains near Monte Vista, Colorado. Platt’s interest in paleolimnology developed during his graduate school years at the University of New Mexico, working with Roger Anderson and Walt Dean. He received his Ph.D. in 1967. He went on to do post-doctoral research at Yale University under G. Evelyn Hutchinson and then became an Assistant Professor at the University of Minnesota Limnological Research Center, where, among other projects, he worked on a multidisciplinary study of the Klutlan Glacier, Yukon Territory (Bradbury and Whiteside 1980). In 1975, he joined the Paleontology and Stratigraphy Branch of the USGS, where he offered a primary specialty in continental diatoms and secondary specialty in Quaternary palynology. Platt’s work focused on developing a continental diatom biostratigraphy for Miocene through Quaternary sediments and on paleoclimatic reconstructions from lacustrine records

    Century-scale paleoclimatic reconstruction from Moon Lake, a closed-basin lake in the northern Great Plains

    Get PDF
    Estimates of past lake-water salinity from fossil diatom assemblages were used to infer past climatic conditions at Moon Lake, a climatically sensitive site in the northern Great Plains. A good correspondence between diatom-inferred salinity and historical records of mean annual precipitation minus evapotranspiration (P - ET) strongly suggests that the sedimentary record from Moon Lake can be used to reconstruct past climatic conditions. Century-scale analysis of the Holocene diatom record indicates four major hydrological periods: an early Holocene transition from an open freshwater system to a closed saline system by 7300 B.P., which corresponds with a transition from spruce forest to deciduous parkland to prairie and indicates a major shift from wet to dry climate; a mid-Holocene period of high salinity from 7300 to 4700 B.P., indicating low effective moisture (P - ET); a transitional period of high salinity from 4700 to 2200 B.P., characterized by poor diatom preservation; and a late Holocene period of variable lower salinity during the past 2,200 yr, indicating fluctuations in effective moisture

    Moon Lake 11,000 Year Diatom-inferred Salinity Data

    Get PDF
    Estimates of past lake-water salinity from fossil diatom assemblages were used to infer past climatic conditions at Moon Lake, a climatically sensitive site in the northern Great Plains. A good correspondence between diatom-inferred salinity and historical records of mean annual precipitation minus evapotranspiration (P-ET) strongly suggests that the sedimentary record from Moon Lake can be used to reconstruct past climatic conditions. Century-scale analysis of the Holocene diatom record indicates four major hydrological periods: an early Holocene transition from an open freshwater system to a closed saline system by 7300 BP, which corresponds with a transition from spruce forest to deciduous parkland to prairie and indicates a major shift from wet to dry climate; a mid-Holocene period of high salinity from 7300 to 4700 BP, indicating low effective moisture (P-ET); a transitional period of high salinity 4700 to 2200 BP, characterized by poor diatom preservation; and a late Holocene period of variable lower salinity during the past 2,200 years, indicating fluctuations in effective moisture

    Diatoms at >5000 Meters in the Quelccaya Summit Dome Glacier, Peru

    Get PDF
    Diatoms were found in late Holocene age ice-core samples recovered from the Quelccaya Summit Dome in the tropical Andes of Peru and were imaged by environmental scanning electron microscopy and identified. Freshwater diatoms in the genera Hantzschia, Pinnularia, and Aulacoseira were the most common taxa in the samples and indicate a freshwater source for the material, which also is suggested by the presence of the freshwater alga Volvox. The overall species composition of the diatoms suggests that the majority of taxa originated from a high-elevation lake or wetland in the cordillera surrounding the ice cap. The abundant diatom valves, up to 70 µm in size, likely were transported to the ice via wind
    • …
    corecore